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This research program investigated signal processing problems encountered in high-
resolution image formation. Reliable imaging of scenes with high resolution and high speed
is an important and key part of any defense system. In some imaging systems, the image
has to be constructed from linear measurements and convex constraints (such as upper and
lower bounds on image sample maghitude, and support limits). We studied iterative, finite
parameter reconstructions that lead to images that meet the constraints, match the data to

within a pre-specified tolerance, and come closest to a given nominal.

We addressed three different aspects of signal/image reconstruction, namely:

1. Developing fast algorithms for high resolution signal /image reconstruction.
2. Resolutions Analysis of signal reconstruction algorithms.

3. Numerical and computational aspects of signal reconstruction viz. stability and regu-

larization.

[

Important results in each of the above three topics are summarized below.

Summary of Important Results

1. Fast Algorithms

The standard approach to the problem of image reconstruction from linear measurements
and convex constraints has been an alternating projections onto convex sets (POCS) algo-
rithm, studied by Youla and others. The approach suffers from slow (linear) convergence,
high computational cost and non-unique limits. We have developed a quadratically con-
vergent iterative algorithm (Newton algorithm) for this problem. Central to the Newton

algorithm is the derivative of the nonlinear projection operator onto a convex set. We ob-

tained a new general mathematical result for the existence and construction of the derivative ’__?:
_ y

of the projection operator for a class of convex sets. This result was then used to give the 0 i
0 =

Newton algorithm for the signal recovery problem. A salient feature of the algorithm is the

quadratic rate of convergence.
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We also studied the implementation aspects of the algorithm and developed a computation
and memory efficient implementation of the algorithm using conjugate-gradient iterations
within each Newton iteration. A remarkable feature of the algorithm with this implemen-
tation, is that each iteration has similar computational complexity as an iteration of the
POCS algorithm. The faster rate of convergence of the algorithm (as compared to POCS)
‘thus enables us to compute high resolution reconstructions with fewer computations. The
algorithm has been tested extensively on imaging examples and we have obtained extremely
good performance. In many image formation schemes, 6 to 7 iterations seem to suffice,

compared to the 100s of iterations required by classical methods such as POCS.

2. Resolution analysis

Resolution ability is the ability to reproduce fine details such as, narrow peaks or closely
spaced peaks in a signal. The study of resolution is important, since understanding the
relationship between resolution limits and the various components of a recovery problem

and algorithm, could help us design better data acquisition schemes and algorithms.

The earliest definition of resolution limit is the Rayleigh Resolution Limit. This definition
is based solely on the observed data and not on any recovery algorithm. 'i‘he definition is
acceptable when there is no processing of the data to recover or enhance the features based
on exploiting prior information. The Rayleigh limit is thus a lower bound on the achievable

resolution.

We find that where infinitely many noise-free measurements are available, the resolution
achievable is in fact independent of the width of the sampling pulse and depends only the
inter-sample distance. The Rayleigh limit, on the other hand, is dictated by the width of the
sampling pulse. In the presence of observation noise, however, the notion of exact recovery
has to be abandoned and a new measure of resolution is necessary. We define a new measure
based on ‘allowable levels of worst-case error, and find that the resolution limit depends on

the method of regularization used in the recovery algorithm.

In the more practical situation in which only finitely many noisy observations are avail-
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able, the worst-case error is unbounded and so we have to restrict the search to a smaller
set of signals. In order to meaningfully describe resolution limits for the problem of signal
recovery from finitely many noisy observations, we restrict the class of 'signals to the set of
bandlimited and essentially timelimited signals, since it describes most signals encountered in
practice. This set is characterized by the well known orthonormal family of functions called
the Prolate Spheroidal Wave Functions and is known to be approximately finite dimensional,
which enables us to seek reconstructions from a lower dimensional subspace of the space of
bandlimited signals. Reduction in dimension causes an error in the reconstruction, which we
call the intrinsic error. A second error is incurred while determining the parameters describ-
ing the lower dimensional reconstruction. The reconstruction error is then the sum of these
two errors. We show that the worst-case values of these two errors can be pre-computed for
each choice of reduced dimension. The error computation provides both an optimal choice

of dimension and a precomputed bound on the resolution ability of the algorithm.

3. Numerical and Computational aspects:

Most reconstruction problems are ill-posed. Therefore, regularization is needed for an
approximate but stable computation of the solution. The truncated SVD approach is popular
method of regularization. The selection of the proper rank is the main problem in this
technique. We have developed a new rank selection strategy based on a bound on the noise
energy alone. In the absence of bounds on the signal energy we enforce our belief that the
signal energy cannot be large, by introducing a penalty on the solution in the worst-case
(min-max) analysis. The rank is selected so that the worst case error with a penalty on
the solution norm is minimum. This method of regularization was tested in bandlimited

extrapolation problems and it gave excellent results.
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Abstract

Resolution analysis for the problem of signal recovery from finitely many linear
samples is the subject of this paper. The classical Rayleigh limit serves only as a lower
bound on resolution since it does not assume any recovery strategy and is based only on
observed data. We show that details finer than the Rayleigh limit can be recovered by
simple linear processing that incorporates prior information. We first define a measure
of resolution based on allowable levels of error that is more appropriate for current signal
recovery strategies than the Rayleigh definition. In the practical situation in which only -
finitely many noisy observations are available, we have to restrict the class of signals
in order to make the resolution measure’ meaningful. We consider the set of bandlim-
ited and essentially timelimited signals since it describes most signals encountered in
practice. For this set we show how to precompute resolution limits from knowledge of
measurement functionals, signal-to-noise ratio, passband, energy concentration regions,
energy concentration factor, and a prescribed level of error tolerance. In the process we
also derive an algorithm for high resolution signal recovery. We illustrate the results
with examples in one and two dimensions.
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1 Introduction

The problem of recovering signals from linear measurements arises in many applications, and
several algorithms, linear and nonlinear, have been developed and analyzed for this problem
[1,2,3,4,5,6,7, 8,9]. However, the fundamental question regarding the resolution ability of
a recovery algorithm is often left unanswered. Resolution ability is the ability to reproduce
fine details such as, narrow peaks or closely spaced peaks in a signal. The study of resolution
is important; in many applications it is necessary for the reconstruction algorithm to have
a certain minimum resolution in order to be effective. For example, consider the digital
mammography application, where a 2-D X—ra.j profile is to be reconstructed from samples.
With current sensor technology and physical limitations, the sampling operation amounts to
2D pulse sampling with pulse width (A) at least 50 microns and sample spacing (7) at least
50 microns, which limits the “resolution” obtainable from a single exposure to 50 microns
or larger, i.e., details in the image that are narrower than 50 microns cannot be reproduced.
The integration with a pulse of width 50 microns causes smearing of finer details, and the
sample spacing of 50 microns can cause us to miss these details altogether. However, early
detection of breast carcinoma requires that features of width 25 microns be reproduced in
the image. The grain size of an X-ray film is small enough for these features to appear in
the more conventional analog X-ray photographs. To make digital mammography equally
useful for diagnostic radiology,' resolution of at least 25 microns is required. More generally,
the study of resolution limits is important since, it could help us assess the effectiveness of
a particular algorithm, and compare different algorithms in a rational manner. Moreover,
understanding the relationship between resolution limits and the various components of a
recovery problem and algorithm, could help us design better data acquisition schemes and
algorithms.

The problem of resolution analysis is twofold: first, we need a meaningful measure of
resolution ability, and second, we have to be able to analyze the performance of a recon-
struction algorithm in terms of the defined resolution measure. The earliest definition of

resolution limit is the Rayleigh Resolution Limit. It is defined as follows:

Definition 1.1 (Rayleigh Resolution Limit) [10] If two equally strong point sources
(impulse intensities), § or more apart, are reproduced as peaks with at least a 19% intensity
dip, and if sources less than & apart are not reproduced as well, the resolution limit is said

to be 4. n

Equivalently, the Rayleigh resolution limit is inversely proportional to the main lobe width
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of the point spread function of the blurring (or sampling) kernel. This definition is based
solely on the observed data and not on any recovery algorithm. The definition is acceptable
when there is no processing of the data to recover or enhance the features based on exploiting
prior information. The Rayleigh limit is thus a lower bound on the achievable resolution.
We might be able to do better with clever signal processing that exploits prior information,
but we should always be able to achieve at least as much resolution as specified by the
Rayleigh limit.-

We find that where infinitely many noise-free measurements are available, the resolution
achievable is in fact independent of the width of the sampling pulse and depends only the
inter-sample distance. The Rayleigh limit, on the other hand, is dictated by the width
of the sampling pulse. In the presence of observation noise, however, the notion of exact
recovery has to be abandoned and a new measure of resolution is necessary. We define a
new measure based on allowable levels of worst-case error, and find that the resolution limit
depends on the method of regularization used in the recovery algorithm.

In the more practical situation in which only finitely many noisy observations are avail-
able, the worst-case error is unbounded and so we have to restrict the search to a smaller
set of signals. In studying the problem of resolution in signal recovery Root et al. [11], [12]
recognized the need for finite-dimensional approximations to overcome instability. They in-
troduce the concept of an error number, which is defined as the mean-squared error averaged
by the dimension of the approximating subspace. As dimension increases, the “detail” in
the estimate increases but so does the error number. The authors thus bring out the trade-
off between the achievable level of detail (i.e., resolution) and the error in reconstruction.
However they do not quantify resolution (detail) and fail to provide resolution bounds.

We appeal to the Fourier uncertainty principle to bring out the relationship between
resolution (detail) and bandwidth. In this sense our is similar in spirit to the classical
Rayleigh resolution limit, but is based on a prescribed tolerance of the relative error.

In order to meaningfully describe resolution limits for the problem of signal recovery
from finitely many noisy observations, we restrict the class of signals to the set of bandlimited
and essentially timelimited signals, since it describes most signals encountered in practice.
. This set is characterized by the well known orthonormal family of functions called the
Prolate Spheroidal Wave Functions and is known to be approximately finite dimensional,
which enables us to seek reconstructions from a lower dimensional subspace of the space of
bandlimited signals. Reduction in dimension causes an error in the reconstruction, which

we call the intrinsic error. A second error is incurred while determining the parameters




describing the lower dimensional reconstruction. The reconstruction error is then the sum
of these two errors. We show that the worst-case values of these two errors can be pre-

computed for each choice of reduced dimension. The error computation provides both an

" optimal choice of dimension and a precomputed bound on the resolution ability of the

algorithm.

This paper is organized as follows: In Section 2 we formulate the signal recovery problem
in a vector space setting. In Section 3 we analyze the resolution limits for the ideal situation
of infinitely many noise-free observations and describe the effects of noise and regulariza-
tion. Based on the results obtained, we suggest a method for improving resolution in the
mammography application. In Section 4, which is the bulk of the paper, we examine the

practical situation of finitely many noisy observations for resolution limits. We demonstrate

the results in one and two dimensional examples.

2 The Signal Recovery Problem

We consider the problem of reconstructing 1D continuous-index signals from discrete linear
measurements. The results presented here can be easily generalized to multidimensional
signals. We demonstrate the generalization by way of an example in Section 4.

Let Ly(R) be the space of finite-energy continuous-index signals with the natural inner

product defined by
(. M) = /R z(t)y(2) dt,

where the overbars denote complex conjugation. Let Bs be the subspace of all signals

bandlimited to P = [5%, 5] and let B denote the orthogonal projection operator onto Bs.
In practical terms, B is simply a ideal bandpass filter with a passband F; = [55, 5] Let
X (Q) denote the continuous-time Fourier transform (CTFT) of z(t),

X(Q) = Flz(t)} = /_ : z(t)e= % at,

and
F{Bz(t)} = { 0 else

We address the problem of recovering a signal from Bs by using discrete linear measure- .

ments. Every linear continuous measurement functional on L3(R) can be expressed as an




inner product with a measurement signal in Lz(R) [13]. Let g; be measurement signals

giving measurements y4(7) as
i) = (@,9) = [ @ o

Let T be the linear bounded operator on Bjs representing the measurement process.

Then
Tz =yq4, z € Bs, (2)

where yg is the vector of measurements. If the number of measurements, p, is finite, yq lies

in CP, otherwise yq lies in Iz(Z), the space of finite-energy discrete-index signals with the

inner product

(4, 9, = 3 ©a(n)ya(n). (3)

neZ
We will use the subscript ‘d’ to identify discrete-index signals, their transforms, and discrete-

time frequency responses. Let X4 € La([—m, x]) be the discrete time Fourier transform of
z4 € 12(2), _ |
Xiw) =Y zg(n)e ", w e [-m, 7).
nez
Finally, the adjoint operator T* maps a vector vg € C? or [3(Z) to a signal T vs =

Z vq4(¢) Bg; in Bj, a simple linear combination of the measurement signals. Here M denotes
M

either the index set {1,2,---,p} or Z.
In the ideal situation of accurate measurements, the problem of signal recovery from
linear measurenents is equivalent to that of finding a solution to the linear operator (2).

However, in practice, the measurements are corrupted by noise. Let ng denote the noise

vector, then . .
2g=Tz +ng (4)

and the signal recovery problem is that of reconstructing z € Bs from zq.

"In the next section we consider the signal recovery problem where infinitely many mea-
surements are available and examine the resolution limit of the minimum norm least squares
solution to (2). We also describe the effects of noise on the resolution limit in this situation.
The bulk of this paper, however, deals with resolution limits in the practical case of a finite

number of noisy measurements, starting from Section 4

'3 Resolution Limit with Infinitely Many Measurements

It is well known that if all signals bandlimited to [-F, %] can be reconstructed perfectly,

then two point sources spaced § apart will show up as distinct peaks in the reconstruction.
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This observation is a natural basis for our first definition of resolution.

Definition 3.1 (Resolution limit under ideal conditions) A reconstruction algorithm
is said to have an ideal resolution of § if signals bandlimited to [-%, §] can be reconstructed

perfectly under noise-free conditions. [

This definition, unlike the Rayleigh definition, is based on the recovered signal instead of
on the observed signal. Hence, the resolution limit will depend on the recovery strategy
adopted. We will show next that we can do better than the Rayleigh resolution limit.

When (2) admits no exact solution because of noise in measurements, a popular recourse

is to seek the unique minimum norm least squares solution of (2)
imnes = T*(TT*) 2, (5)

where (TT")T denotes the pseudoinverse of the composition T7T*. From the description of
the measurement operator and its adjoint it follows that, for vq € 12(2),
(TT*va) (i) = Y 24(k)(Bgk; 9:) Lo(R)- (6)
keZ

In many applications such as digital mammography and deconvolution, the measurement

functions are uniformly translated versions of a basic sampling kernel/pulse go:
gi(t) = go(t — k1), 7>0. (M

With this assumption, (Bgk, ¢i)1,(r) = (B9, Bgi)L,(r) depends only on ¢ — k and not on
absolute time, and, hence, TT* is a convolution. The shift-invariant property of the sam-
pling functions and the TT™* operator is exploited to obtain frequency domain expreésions
for T, T*, TT* and the MNLS solution next.

From (1) and (7) we obtain,

Yiw) = E X(w —T21rk)G(w - 27rk)’ (8)

pu
keZ

where Yj(w) is the DTFT of y; and X (R2) and G(Q) are the CTFTs of z and go respectively.
If #(t) = T"vq, then

&(t) = (T"va)(t) = Y va(k)(Bgo)(t — k) (9)
keZ

which in the frequency domain is

X(Q) = II(Q)G(Q) Va(Q7)- (10)

6




Here I1(Q) is the frequency response of the ideal bandpass filter for passband P5 = [F&, 5],
X(Q) is the CTFT of £ and Vy(w) is the DTFT of vg. The TT* operation is equivalent to

discrete-time convolution with a kernel given by

h(k) = (Bgr, Bdo)Ly(m) = /R dolt — k) (Bao) (Ddt. (1)
Thus, if vg = (TT*)2q then
Vi(w) = Hi(w)Z4(w), (12)
where w=-2rk, . w=2rk, o
Hyw)= 3 (=T 6E=) (13)

keZ
The (TT*)! operation is thus equivalent to discrete-time filtering with a filter of frequency

response

:w Hy(w) #0 ‘
{ 5—17—5 Hyw)=0 (14)

Combining the frequency domain expressions for T'* and (TT‘)T, we find that the minimum

norm least squares (MNLS) solution & = T"'(TT“')Tzd can be computed in the frequency

domain as
X(Q) = R(Q)Z4(Qr), (15)

R(Q) A %‘;—l where Hy(Qr) #0 .
0 where Hy(Qr) =0

where

It is remarkable that the MNLS algorithm is a linear, time-invariant filter even in the
absence of any restrictions/bounds on the sampling rate (;1_-) or pulse width A.

Conventional wisdom holds that the resolution § is limited by both 7 and A, i.e., that to
achieve a resolution of &, not only must the sample spacing 7 be less than §, but the pulse
width A must also be smaller than §. The first condition is considered necessary, because
the Nyquist sampling frequency for a passband [F, §] is 33’-"- (which means the minimum
value of sample spacing 7 is §). The second condition is deemed necessary because of the
classical Rayleigh resolution limitations. Two point sources (Dirac delta functions) spaced
& apart are reproduced in the measured signal yq as a pair of superimposed copies of the
measurement kernel go with a relative translation of 4. If the width A of kernel g is less
than 4, the two copies do not overlap and the two point sources stand out as resolved
distinct peaks in y4.

The following rather simplé analysis of the MNLS reconstruction (15) shows that (at

least in this ideal noiseless, infinite-data situation), the Rayleigh limit is irrelevant, and that
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even if the two point sources do not appear to be resolved in the measured signal yq, they
may be resolved in the reconstruction #. The analysis shows that in this ideal situation,
resolution is determined solely by the sample spacing (i.e., § = 7) and is independent of
pulse width A and even the shape of the sampling kernel go.

If 7 is smaller than the Nyquist sampling interval for Bs = [FF,§] (or if go(t) is ban-
dlimited to [=Z, Z]), then there will be no aliasing in Hy(w) in (13). In this case,

Hiw) = HS)IEE)
Yiw) = X(2)6E). (16)
Therefore,
REQ) = { Ty = o when (Q)G(Q) # 0
0 when I[I(Q)G(R) =0
(17)
and, assuming noise-free observations,
5 _ X(Q2) when II(Q)G(Q)#0
X(@ = { 0 when (Q)G(Q) =0 ° (18)

From this analysis it is clear that, under noise-free conditions and infinitely many sam-

ples, the reconstructed spectrum X (Q) differs from the true spectrum, X (2) only at the
frequencies at which G(Q) = 0. If g(t) is of finite duration, (A < co), the Fourier Uncer-
tainty Principle states that G(Q) cannot be bandlimited i.e. the set of frequencies where
G(R) = 0, has zero measure. Thus X(R) = X(Q) almost everywhere in this case, which
means that the minimum norm reconstruction algorithm has an ideal resolution equal to 7
and not pulse width A. This result is independent of the shape of the sampling pulse, as
long as its support A is finite.

From the above analysis, we now see that it is possible to improve resolution in digital
mammography and other applications in which the width A of the sampling pulse go is
greater than the desired resolution, 4, by the use of multiple exposures based on staggering
the sampling grid by 7, 7 < &, with every new exposure. This strategy is illustrated
in Figure 1 for a 1D problem with a square sampling pulse. For simplicity of analysis,
we assume that the sample-spacing within an exposure is mr, where m is the number of

exposures. Thus, after the m exposures are interleaved, we obtain uniform sampling with
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Figure 1: The mlilti-exposure sampling strategy.

spacing T which can be a small fraction of A. In a 2D application like digital mammography,
this stra.tegy requires multiple exposures with 2D translations of the collimators (relative
to the object) between exposures. For instance, to improve resolution from 50 microns to
25 microns in each dimension in this 2D problem, we will need 4 staggered exposures. A

similar sampling strategy was suggested for tomography and deconvolution applications in

[14, 15].

3.1 Effect of noise on resolution

In practice measurements are usually corrupted by noise and, generally, only a finite number
of measurements are available, which causes the resolution limit to be affected by the shape
and width of the sampling pulse and by the signal-to-noise ratio (SNR). The effects of
observation noise on the reconstruction will be considered next while we still assume that
infinitely many measurements are available.
If Ny(w) is the DTFT of ng, the noise vector, then in the adequately sampled case (i.e.,
T < &) the MNLS solution in the frequency domain is given by
Laawis(@) = { X Q)+ iy where (@GR #£0 (19)
0 where [I(Q)G(Q) =0
When the magnitude of G() is small, the noise component (ﬁ%ﬁ%%%g) becomes rela-
tively large, which leads to a totally unacceptable and unstable solution. Therefore, regular-
ization is required for an approximate but stable solution. A simple regularization scheme
is to zero the solution whenever |G(Q)| falls below a certain value. The regularized MNLS

solution in this case is

£.(Q) = { X(Q) + miShy  where [H@)G(Q)] > p 20)
i 0 where [II{(Q)G(Q)| <




Depending on the shape of the sampling pulse go (and its width A) and on the noise levels,
the frequency bands in P; where |G(Q)| € g may be large. In these bands, there is a total
loss of information about the underlying signal.

Another method of regularization is to add a small positive constant to the denom-
inator of the MNLS solution (15). This approach is popularly known as the Tikhonov

regularization method. The MNLS solution with Tikhonov regularization is given by

£, = T*(TT* + pB) tya. (21)
In the frequency domain the solution is
. 2

NQ)IGOQ)P+p  TQIGQ)+ p
The following example illustrates the two types of regularization schemes and their effects

on the resolution limit.

Example 3.1 Let z(t) be bandlimited to [-16m, 16x] with a spectrum as shown in Figure 2.
Let the sampling function, go(t), be a square-pulse of width A = 1andlet T = % = k.
Figure 2 shows a plot of II(Q)|G(Q)]. With Ny equal to a constant p = 10~% and a
regularization parameter g = 25p, the two regularized solutions X: and X, are illustrated

in Figure 2. |

In the absence of multiple exposures (with 7 = A), the spectrum of X ({2) could have
been recovered only up to frequencies in [5Z, £]. Because of multiple interleaved exposures
(r = A/4), we are able to extract information at the higher frequencies as well. From
Figure 2 it is evident that X, is zero over certain frequency bands. It is also clear that
when the regularization parameter, u, is decreased, the size of these missing frequency
bands decreases; however, the contribution of noise to the solution is increased. Thus
the parameter p presents a trade-off between these two effects and must be chosen as a
compromise between the two. The zeroing of X, over these bands (however narrow) may
be unacceptable in many applications, since it causes oscillatory behavior (often called
ringing) in the time domain. With the Tikhonov regularization, it is observed that the
signal component of the MNLS solution is approximate in the entire frequency region.
However, there are no missing bands and the time-domain solution is smoother. Here as
well, choice of 4 is critical to the reconstruction and is usually made based on the SNR.

Since in the noise-corrupted case, the signal cannot (in general) be perfectly recon-
structed, a new measure of resolution is necessary that allows for imperfect reconstruction.

We develop a measure of resolution based on the maximum tolerable worst-case error.
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Figure 2: Effects of the spectral truncation and Tikhonov regularization in the frequency

domain. —— true spectrum; - - - with spectral truncation; — - — with Tikhonov scheme;

-+ - sampling kernel spectrum.

It is obvious that the magnitude of the reconstruction error (even after normalization
by signal norm) depends on the magnitude of the measurement noise and on the particular
underlying signal. We therefore assume that the SNR.is greater than a given positive

constant J. In other words, we assume that in (4), [In4l]?> < n?||Tz]|2. Therefore, we define

resolution as follows.

Definition 3.2 A certain reconstruction algorithm has ¢-resolution of & or better if the

worst-case normalized reconstruction error (over all z € Bs and all ng such that [|nqf| <

7n||Tz|)) is no larger than €,

=12
1 < VzeBs; Vng: ”nd“2 < 772||T9’“2-
]

Note that ¢-resolution is defined for a recovery algorithm and not for the recovery problem.

In order to lower-bound the ¢’-resolution limit for a particular recovery algorithm, we
require tight upper bounds for the worst-case normalized reconstruction error. As we shall
see, in many situations the upper bound might trivially be 1, unless the feasible set of

signals is restricted. For example, let $ = {Q : |G(Q)| < p#}. Consider a signal z € Bs such

11




that

1 QeSNPFs
0 else ’

X(Q) = {

For this signal it is clear that X.(Q) = 0 YQ. Thus, if z is not identically zero, the worst-case
normalized error in this case is 1. A less trivial bound on the worst-case error might be found
if 0 is increased or if we restrict the set of feasible signals by imposing constraints based on
known signal properties, such as energy bounds, positivity, bounds on the derivatives, or
spectral bounds. We will attempt to obtain tilis bound in the next section for the practical

situation in which only finitely many measurements are available.

4 Resolution in the Practical Situation

In this section we analyze resolution limits for signal recovery problems with finitely many
noisy observations. Let p be the number of measurements available. The measurement

process as before is represented by the linear operator T : Ly(R) —+ C? as
(Tz)f = (z,g.'), t=1,2,...,p.

The g; could be uniformly translated versions of a single measurement signal go, as in (7),

but it is not necessary for this analysis.

The reconstruction problem is formulated as follows

given T, §, and measurement vector yq € CP?, find z € B; such that Tz = y4.

" The set of all signals in B; satisfying Tz = yq is a linear variety, V, with finite codimension

p. Thus, there are an infinite number of feasible solutions if data-matching is the only
constraint. The min-max optimal solution, which is also the minimum norm solution, is

given by
- #yy = argmin|z|
zeV
= T*(TT*) 'ya.

The operator TT™* is now simply a p X p matrix whose ij*# entry is (g;, 9:).

Since the true signal can be any member of V, the supremum of the normalized recon-
struction error, Hzﬁ&ll’ is 1. Thus our earlier definition of €¢’-resolution becomes mean-

ingless, since for every yq and passband P5 = [, 5], we can find a signal z € B for which

12




the normalized reconstruction error is greater than the tolerable error. Hence, we have to
restrict the set of admissible signals appropriately to bound the worst-case error.
However, a finite number of measurements is often justified, because most signals en-

countered in physical systems are essentially timelimited. Accordingly, we restrict our at-

tention to these signals.
Let T be a compact set (usually a union of possibly discontiguous closed intervals) in

R. Let W : L3(R) — La(R) denote the windowing operator to T,

We(t) ={ :(t) Zl:er : (23)

Since (Wz,y) = (z,Wy) Vz,y € La(R), W is a self-adjoint operator. A signal is said to
be e-essentially time-limited to I if [[Wz||? > (1 — €)||z]]>. Let G5(T") denote the set of

signals which are bandlimited to [5F, §] and e—essentxally timelimited to T, i.e.,

Ges(T) 2 {z € Bs: ||qu2 > (1= &)zl (24)

The set G, 5(T") represents most signals encountered in physical imaging and information

systems. Hence, we state the following definition of resolution.

Definition 4.1 A reconstruction algorithm on concentration window I' and concentration

factor 1 — ¢ with SNR > ;1? will be said to have ¢’-resolution of § or better if Vz € G 5(T’)

- and VYngq s.t. [|nq]] < n||Tz||,

llz - 2|

<é.
ez

The set G s(T") has several interesting properties which can be exploited to determine res-
olution limits. Many of these properties are characterized by an orthonormal family of
functions called the Prolate Spheroidal Wave Functions (PSWFs), {#;}%2,, and by the as-
sociated eigenvalues, {);}2, [16], [17). The PSWFs corresponding to I' and F; are solutions

to the following integral equation,

sin2E(t —
Ndi(t) = /r —7_(5.2-(5‘9—)8-)-915;(3)&. (25)

Properties of the PSWF and the associated eigenvalues have been widely studied. The
following three properties of the PSWF are essential to the treatment of resolution limits

with finite data:
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1. ¢;’s are bi-orthogonal functions, i.e., for i # j

<¢i’ ¢J ) =
(Wi, Wo;)

il
oo

2. A1 > A2> A3---> 0,
3. {#:}2, form an orthonormal basis for B;.
With G, 5(T) as the feasible set, the recovery problem becomes
given T, § and the measurements yq € C?, find z € G 5(T') such that Tz = yq.

Since the resolution limit of a recovery algorithm is based on the worst-case relative error,

our objective is to find an algorithm that will minimize the worst-case relative error.

4.1 Lower Dimensional Approximation

Consider any signal z € G (') C Bs. Since the {¢;}2, form an orthonormal basis for B;s

from property (3), we can express z as
o
T = E Ol,'(ﬁ,'.
=1
To recover z € G.5(T), in general, we have to determine an infinite number of o, from a
2
finite number (p) of observations. However, every z € G, s(I') satisfies ﬂﬁ%ﬁLL >1-¢, and
hence we have the following condition on the coefficients a;, -
o0
E a? A>l—e
i=1

This condition suggests that we may be able to restrict our reconstructions to a finite-
dimensional subspace of B;s (of dimension less than p) and still obtain low error recon-
structions. The next theorem, a well-known result, shows that G, s(I') is essentially finite

dimensional and that the PSWF optimally approximate G, ;s(T") [16], [17].

Theorem 4.1 (Landau-Pollak-Slepian) For any positive integer N, amongst all N-
dimensional spaces Sy, the space spanned by the first N PSWF, Sf, = span{dy, d2,...,ON},
is optimal for G 5(T") in that it minimizes

max  min M
2€G, 5{I'} 2€Sy =]l

(26)
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Moreover, the worst-case relative error can be expressed in terms of the eigenvalues associ-
ated with the PSWF as
A 21-¢>0
{ N+1 (27)

M—(1—¢ _ .
r{:&?;% AN+1<1 €<A1

E’(Sf,) is also called the N-width of the set G¢ (L) or the intrinsic error at dimension N.®

Thus, for a fixed dimension, r, the subspace spanned by the {¢:}:=; minimizes the worst-
case relative error. Moreover the worst-case relative error E(S?) decreases with r. Thus it
would seem that, given p observations, the best choice of a lower dimensional subspace to
approximate G s(I") would be Sg’ = span{¢y, - -+, $p}. This choice would lead to p equations
in p unknowns. Unforfuna.tely, the p parameters required to describe the reconstruction from
S‘; cannot be determined exactly from the observations y4 for two reasons. First, yq are
noise-corrupted in practice. Second, the observations yy are linearly related to z € Gs(T)
and not to the projection z, of z onto Sg’. Thus, an additional error will be incurred in
determining the parameters that describe the lower dimensional approximate. We next

derive an expression for this error and its worst-case value Z(r) for a fixed dimension r. We

suggest choosing r to minimize E(S?) + =(r).

4.2 Worst-Case Error Analysis for Subspace Selection

Consider the reconstruction based on an r-dimensional approximation of Ges(T'), where

r < p, and let z, be the projection of z onto S¢. Then,

.
z, = E o;P; (28)
=1
A 0
and the approximation error e, = — , = Z a;¢;. In this section, we study the effect
t=r+l1

of measurement noise and approximation error e, on the estimate of {a;}!—; from measure-

ments y4. The measurements yy are linearly related to z and corrupted by noise n4:

Tz +ny4

Yd
= Tz,+Te.+ nyg
r
= Y oiT¢;i+ (Ter + n4)
=1

= Aqo + (Te, + ng), (29)
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where A, is a p X r matrix with A,.(3,j) = (¢;,9:), " = (e1,--a.)T. We will assume
that the columns of A, are linearly independent. If they are not, the worst-case error is

unbounded. The LS solution of T# = yq, & € S, is determined from the MNLS solution

of A,&" = yq, which is

& = Alw

= o+ AI(TC,- + nd))

where AI = (AF A,)"1AH. Thus the reconstruction is given by

t=3 & (30)

f=1

,

and (» =z, — &, = Z(&f — a;)¢; is the additional error incurred in determining the oy
=1

parameters. The error term, ., has contributions from both Te, and measurement noise

nd.
Thus the total reconstruction error is
llz - 5=rI|2 = |lz—2 +2r - iruz
= |le.+ Cr”2
lle-I12 + IG|I> since e, L S and obviously ¢, € S?.

]

A pictorial representation of these error terms is given in Figure 3. We seek an upper bound

Figure 3: Error terms.
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on uzﬁ"ﬂ‘ From Theorem 4.1, it is clear that Vz € G s(T),

2 A 21-€¢>0
||er|l E(S}) = { N+1

M—={(1—¢ .

All that remains to be done is to upper-bound lh%'ﬁf- This error term can be interpreted

as a penalty on complexity. The complexity in this case is the dimension of the subspace.

r
Recall that ¢, = Z(é}' — a;)¢; and that @ — o = I(Te,. + ng). Hence,

=1

ll&" - o"|l?

G112
4] (Te, + na)|I?

< NAlITe |2 + | Al nall? + 21 Al Te | | A nal, (31)

with equality achieved when AI nq is collinear with AI Te,. If a lower bound (-51,-) on SNR

is known, then

IA

|| Tz|)?
2 » 2
N°Omaz(TT") ||zl|%,

lInall?

IA

with equality achieved when z is the singular vector of T that corresponds to its maximum

singular value \/Omaz(11*). Now all that remains to be done is to obtain a tight upper

1
bound on uﬁﬁ%ﬁ—'—u over £ € G¢s5(I). A loose upper bound may be obtained by using

Omaz (TT.)

P lle-|l, but we can achieve a better bound because e, has less than A,

lalTe | <

of its energy in I'. Mathematically, our objective is to find

sup I f o AT T 4. (32)

Z“’ =1 i=r+l

=1 !'

* a?(1-X;)<e

iml o
This is a nonlinear infinite programming problem, and in general we can seek only approx-
imate solutions. We devote the remaining of this section to that task. We first show that
under mild conditions, the problem can be approximated by a finite variable nonlinear pro-
gramming problem. We then apply well-known techniques to solve the problem. We start

with the following definition.
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Definition 4.2 An observation made with a measurement functional, g, is in the concen-

tration window, T\, if support(g) C T

Lemma 4.1 [18] The eigenvalues {);} associated with the PSWF corresponding to a pass-

band [5%, ] and a compact concentration window I' are absolutely summable and

= 2
Z AE = 3 / dt. (33)
k=1 r
|
=] A > -]
Lemma 4.2 Letz € G5(T) withz = ) _ axdr and ||z* = T2, ol =1 Leten= Y oardr
k=1 k=N+1

If all the measurements are taken in the concentration window, T, i.e., every g; has a sup-

port inside the concentration region T, then there exists a finite number M such that for

every positive integer N,

o0
ITenl® < M( 3 M),
k=N+1
and }Jgrx |Ten||* = 0. In fact, ||TT*|| will serve as M. : [

Thus as N becomes large the contribution of Tey becomes negligible in the error.

Theorem 4.2 Let ¥ > 0 and the rest of the assumptions be as stated in Lemma 4.2. There
exists a positive integer N independent of the choice of z € G.s(T') such that

N
1AfTe | = | 3 aAlToill < 7. (34)
- i=r+l1
Furthermore,
. AfT N
sp MATel iy Y ealTa, (35)
2eGes(r) 17l Yo ai=t isr

Eil a?(1=A;)=e

Proofs of Lemma 4.2 and Theorem 4.2 can be found in the appendix.
Theorem 4.2 shows that the solution to the infinite programming problem in (32) can

be approximated closely by a sufficiently large finite variable problem. Let N, sufficiently

large, be chosen, let Hy 2 [h1, ha, -+ -hn] be a p X N matrix with columns h; given by
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(36)

’

0 1<i<r
Tl AlTg; rr1<i<n

and let Ay = diag([A1, Az, -+, An]). Then a bound on IIAITe,. || can be obtained by com-

puting
m, = max IIHNaN” (37)

1A aN|2=1-¢
lla¥[I=1

A popular method for solving this nonlinearly constrained quadratic program is the sequen-

tial quadratic programming method, [13], [19].
Let b, 2 (v + m,)? and define the noise contribution factor P2 £ ""‘—:’;m Then

Al Te, |2 < b,|z||? and from (31),

G2 < IAITer? + || At nall? + 2]l Al Te, || | Al g

Omaz (TT-) 9 amw(TT*) 2 2
S (b,. + Omin(Ar) " +2\/ ohin(Ar) mor )l
= (b + pn? + 21/b.0212) |||
£ gl e

where Z(r) = £ br+p2n?+2./b,p2n%. Hence, we have the following procedure for determmmg
Z(r), using the PSWF, ¢;, the corresponding eigenvalues )\;, and an acceptable value of ¥

For each candidate dimension r,

e construct the p x r matrix A, = [T¢$ 1T, - - -T¢,] and compute its smallest singular

value, opm;n.

e Find the smallest integer N for which
7?
dt — /\ < mm
NI

e Construct Hy as in (36), and let Ay = diag([A1, Az, -+, AN]). Solve (37) by the
sequential quadratic programming method and let b, = (v + m,)>2

E(r) g by + p?.f]z + 2\/6,-/),2.772 = (\/b—r + Pﬂ7)2- (39)
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Thus a bound on the worst-case normalized error, ©(r), can be obtained by the sum of

the intrinsic error and a bound on the worst-case ||¢[1?, i.e.,
O(r) = min(1, E(S}) + Z(r))- (40)

Thus, to ascertain whether a resolution of § can be achieved given a set of p measure-
ments, we first compute the bound on the worst-case normalized error bounds for each
dimension r ranging from 1 through p using the PSWF corresponding to Fs = (55, %] and
we determine the dimension r* which gives the smallest error. If the worst-case error for this
dimension is below the allowable error, we can claim that a resolution of § can be achieved
with the given set of measurements and noise level.

Remarks:

1. As a consequence of the above analysis we have a new algorithm for signal recovery

based on dimension reduction guided by the bound on the worst-case reconstruction

error.

2. The worst-case error-bound given by (40) does not depend on the data yq. Tt depends
only on the sampling functions, g;, the bandwidth, %’5, the sample spacing, 7, the
noise level, 7, and the choice of the dimension, r. Thus, the selection of the dimension

and the determination of resolution can be made (off-line) before the measurements

are taken.

3. Our analysis and definition of resolution are based on worst-case errors in a determin-
istic framework. Therefore, in general the reconstruction error can be expected to be

lower than the predicted value.

th

4. The analysis holds true for all sampling patterns. Hence g;, the i** measurement

function, does not have to be a shifted version of a single measurement function go.

The only restriction is that the support of each g; lies inside the concentration window,

T.

5. We have assumed essential timelimitedness and strict bandlimitedness in our treat-
ment, which can be easily changed to essential timelimitedness to I' and essential
bandlimitedness to P. The PSWF will still be the optimal sequences, {20] and all the

results will still hold true, with minor modifications.

" 6. The PSWF have been studied in the classical setting of 1D signals with lowpass

passband and contiguous concentration intervals. The three relevant properties of the
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PSWF and the dimensionality theorem can be generalized to the more general setting
of mD signals with P and T discontiguous. They follow by expressing the integral

" equation, (25) as a linear operator equation, as follows [21], [22]

W BW;
Aidi

Recognizing that the 1; are the eigenvectors of a positive semidefinite operator with

eigehva.lua );, the following three properties of the PSWF which are essential to this

= ‘/\i¢i
- BWe (41)

analysis become obvious:
e the ¢;’s are biorthogonal functions, i.e., for ¢ # j

0
0

<¢i ’ ¢J>
(Wei, We;)

e A1 >A2>A3--->0.
o {¢;}32, forms an orthonormal basis for Bp, the space of finite-energy signals

bandlimited to P.

Since the dimensionality theorem uses only these three properties, it can be generalized

as well.

4.3 Implementation Details

In practice, all integrals have to be computed using numerical approximation methods. We
use simple summation after discretizing functions on a fine grid. With discretization, the
PSWF computation of (41) becomes an eigenvalue-eigenvector computation followed by
low-pass filtering [23]. Constructing the entries of the matrices A,, Hy and TT" requires
computation of integrals and is also achieved by discretization and summation.

In the 2D case, if the passband is square, the kernel in the integral equation, (25),
describing the PSWF becomes separable. If in addition the concentration region is also

square, the double integral in (25) becomes

Qk (1'1, Tz) d‘l’ld‘rz, (42)

T/2 (T/2 gin2E(t — 1) sin2E(t — 1)
Pr(t,8) = / s &
m®bd)= | e w =T w(E-)
where &}, is the k** 2D PSWF with associated eigenvalue p. If the ¢; are the 1D PSWF cor-
responding to § and T' = [~T/2,T/2), then it is clear that for each 1, j, ®(, s) = ¢:(t)$;(s)
satisfies (42) with x4 = M\);. Thus after discretization, if we represent each 2D PSWF
as a long 1D vector of columns stacked one below the other, then the 2D PSWF's can be
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computed as Kronecker products of corresponding 1D PSWFs taken two at a time with
eigenvalues equal to the product of the corresponding eigenvalues.
We next illustrate these results and the computational details in two examples. The

first example is in a 1D setting. The second example is in a 2D setting to illustrate the

applicability of the results to multiple dimensions.

Example 4.1 (1D setting) Consider reconstruction of 1D signals that are bandlimited
to [—4r,4x] and have at least 99.5% of their energy concentrated in [-2.0,2.0], from 19
measurements taken with shifted unit rectangular pulses of width -;- and interpulse distance

(stagger) 3. Thus 4, T, and € are i—, [~2.0,2.0] and 0.005 respectively in the definition of

Ge;s(T), while p and 7 are 19 and 4+ The sampling functions are
. ‘
o(t) =golt — ) k=12,...19,

where

1 0<¢tL£0.5
go(t)={0 els—c; )

Note that the width of the sampling pulses is % = 26. Thus the Rayleigh resolution limit
is 28. Let the error tolerance be 10%. We will see that, at an SNR of 40dB, a resolution
limit of 7 = 1 (better than the Rayleigh limit) can be achieved by the proposed algorithm.

The nonlinear programming problem of (37) is solved by using the sequential quadratic
programming method. The intrinsic error E(S?), the parameter estimation error without
noise b,, the noise contribution factor p,, are computed for each dimension, r, for which
E(S?) < 1. The values are tabulated in Table 4.1 along with ©(r) = E(S?) + (Vb + pr1)?
for SNR of 32 dB and 40 dB. From the table we observe that, with a 40dB SNR, the
optimal dimension for this signal recovery problem is 15, and the worst-case normalized
error is bounded above by 0.0531. In fact, using (39, 40), we can show that with a 10%
error allowance, a resolution of at least 7 = 0.25 can be achieved by the above algorithm
whenever the SNR is greater than 32dB. As remarked earlier, all these computations can
be done off-line, since they do not depend on the actual observed data.

We now test the reconstruction algorithm using the precomputed optimal dimension of

15 on a specific signal,

.9z'n(0.47rt))2 +0 2sz'n(0.11rt)

-"’(t)-'-‘( 0. Ant R cos(3.5;1rt).
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Table 1: Intrinsic error, noise factor and total error versus dimension.

r | E(S?) b  noisefactor o(r) o(r)
: or SNR=40dB SNR=32dB

13 | 0.2203 0.1905 4.3953 0.4511 0.5188
14 | 0.0379 0.0430 5.4552 0.1065 0.1561
15| 0.0100 0.0189 7.0128 0.0531 0.1078
16 | 0.0046 0.0338 9.4899 0.0823 0.1819
17 | 0.0034 0.0788  .13.2808 0.1744 0.3788
18 | 0.0032 0.1103 17.6118 0.2615 0.5998
19 | 0.0031 0.1124 27.8416 0.3797 1.0000

A plot of the signal is shown in Figure 4 (a). The highest frequency in z(t) is 3.6 radians.
Note that z(t) is a low frequency signal with a low energy, high-frequency ripple. The
frequencies are selected in order that the low-frequency component falls below the Rayleigh
limit and, hence, is captured by the observations, whereas the high-frequency ripple is much
above the Rayleigh limit and thus is not seen in the observations (Figure 4 (b)). A high
resolution reconstruction should resolve the high frequency ripple, also. Since z(t) has 99.69
% of its energy inside the concentration interval [—2.0,2.0], i.e., € = 0.0031, it belongs to
the set G,;5(T) considered in this example. We take 19 observations in the concentration
window with shifted versions of the sampling function described by (4.1). The observations
are shown in Figure 4(b). Note that the high-frequency ripple is completely lost in the
observations. ' '

The reconstruction, #, is computed using the algorithm with precomputed dimension

of 15. It is also depicted in Figure 4 (a). The normalized error for this reconstruction,
(”ﬁu)2, is computed to be 0.0068, which is much less than the worst-case error bound of
0.0531. ]

We now consider an example in two dimensions.

Example 4.2 (2D setting) Consider the reconstruction problem for 2D signals that are
bandlimited to a square passband P; = [-2m,2n] X [—27,2x] and have at least 99% of
their energy inside the square region [—2.5,2.5] x [—2.5,2.5] from 121 measurements. The
measurements were taken using pulse sampling functions with a square region of support of
width 1 and an intersampling distance of % in each direction. Since the sample spacing (%) is

smaller than the sampling kernels’ width (=1), this sampling strategy requires interleaving
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0.4p

0.3p

(b)

Figure 4: Reconstruction of the test signal using the optimal dimension determined by the

worst-case error analysis. The SNR is 40db. (a) signal, z(t);------ reconstruction, £(t)

(b) + Observations.

of multiple (four) staggered exposures as in Figure 1. The sampling functions are

g1k(t, 8) = go(t — é,s— -’25) Lk =v-‘1,2, .. 11,

where

1 0<t<1,0<s<1
0 else ’

go(t,8) = {

With this sampling kernel, the Rayleigh limit will be 1 in each dimension. Let measurements
be taken from the concentration window with n = 1—(1)-0 This value of n corresponds to an
SNR of 40 dB.
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The nonlinear programming problem of (37) is solved using the sequential quadratic
programming method, and E(S?), E(r), and ©(r) are computed for each dimension r for

which E(S?) is less than 1. These values are plotted in Figure 5. From the figure we

1

08

Ermor Values

0.7]

05

0.4F

0.3

.....',.u-,._.u'u'a.'u‘u SIS R

02r

0.1

%

Figure 5: Intrinsic error, E(r) - - --; parameter approximation error, E(r) —; total error,

o(r)----.

observe that the optimal dimension for this signal recovery problem with a 40dB SNR is

" any dimension between 81 and 89. The worst-case normalized error in the noisy situation

(40dB SNR) is 0.1326. Thus, if an error of 13.5% is tolerable, then a resolution of r = 0.25
can be achieved by the above algorithm.
Now consider a specific signal in G5(I'): z(t,s) = h(t)h(s) with

.9:'11(0.211't))2 +0 053in(0.21rt)

h(t) = 0.25 ( 0.27t 0.27t

cos(1.757t).

A meshplot of the z(t, s) is shown in Figure 7. Asin the 1D case, the signal is comprised of a
low-frequency component with a high-frequency ripple. The observations are four exposures
with stagger, and they are as shown in Figure 6. The interleaved observations are also shown
in Figure 6. The reconstruction using dimension 81 is shown in Figure 7. The relative error

is computed to be 0.0179, which is much below the computed upper bound. |
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5 Conclusions

A resolution analysis for signal recovery from finitely many discrete, noise-corrupted, linear
measurements is presented. A new measure for resolution is introduced, which is more
appropriate than the Rayleigh resolution limit for current signal recovery algorithms. This
resolution measure is based on a prescribed tolerance of relative error in the reconstruction,
and unlike previous definitions is able to bring out the extent to which time or spatial domain
features can be recovered by an algorithm. The computation of resolution limits reduces
to the computation of the worst-case relative error in the recovered signal. By suitably
constraining the class of feasible signals, the worst-case error is expressed as the solution of
a finite-variable nonlinear program. The analysis and examples show that details finer than
the Rayleigh resolution limit can be recovered by simple linear processing even in practical
situations with finite, noise-corrupted data. In the process, we derive an algorithm for high
resolution reconstruction (from linear observations) and show how one can precompute

worst-case error bounds and the resolution limit for the algorithm.

Appendix

Proof of Lemma 4.1: Since all the measurements are taken inside the concentration

region, Tz = TWz, Vz € G5(I'). Therefore,

o0
ITenl? = 1| 3 oxTexll?
k=N+1
o0
= IT Y oxWel?
k=N+1
o0
< TT 32 AWl
k=N+1
o0
< M Y A where M =TT
k=N+1
Lemma 4.1 and property (2) of the PSWF together show that A}im | Ten||? = 0. [
—00

Proof of Theorem 4.2: Let 0/in > 0 be the smallest singular value of A,. By Lemma 4.1
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O

it is possible to choose N such that Z Ak < -—’—"—'—’% Then,
WL T

N )
14iTe, | = || 3 walTai+ 3 walTe

t=r+1 i=N+1

N
IS ATl + 1Al Ten|

t=r+1

IA

N
p < IS wAlTal+1AlIITenl

i=r+l1
oo
< | E a; Al T¢,n+— M 3 X (by Lemma 4.2)
t=r+l 1=N+1
N
< IS wAlTsll+v (43)
t=r+41
Next,
} oo
sup M = sup Il E a;AITqb,-H
2€Ge5(T) =1 T2 al=l i=r+1
: Zm a?(1-2i)<e
N
< sip || 3 wAlTgll+7 (from 43)
Z:l a?=1 i=r+1
E:l f(l z\)<c
N
< sup 1Y aAlTedll+7 (44)
Z::l f51 t==r+41
Z._‘ '(1—-/\ )<e
N
= sap || S wAlTall 4+ (45)
Zfil a}=1 i=r+l

Eﬁl ‘(1—/\. =¢

Inequality (44) follows from the fact that the set Sy = {a: T2, 07 = ; T2, of(1 - ) <
¢} is contained in the set S; = {a: vV a? = ;TN 0?(1 = ) < €} and hence the

supremum over S is greater than the supremum over S;. Equality (45) follows because

Il E,_,._H a;AITqS,-H is a convex function in @, and a convex function maximized over a

convex set achieves its maximum at the boundary of the convex set. [ |
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